Electricidad y Computación

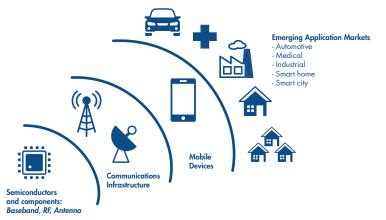
5G cellular system: A brief review of architecture, use cases, and enabling technologies

> Luis Tello-Oquendo, PhD. Iptelloq@ieee.org

> > July 2020

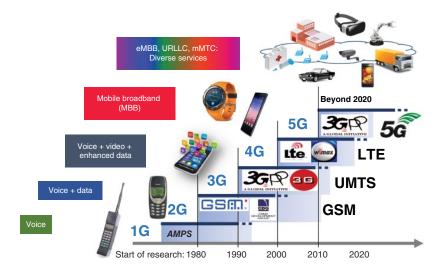
Motivation	KPIs & Use cases	Future Wireless Comm.	References
~			

Contents


• Motivation

- KPIs, capabilities, and use cases
- Architecture
- Future wireless communications

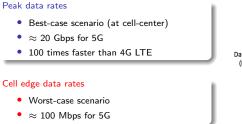
Motivation	KPIs & Use cases		Future Wireless Comm.	References
00000000	000000	000000000000	000	
	- 62			

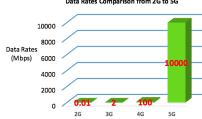

What is 5G?

5G (5th generation wireless systems) is the next major phase of mobile telecommunications standards. The scope of 5G will ultimately range from mobile broadband services to next-generation automobiles and connected devices.

Motivation	KPIs & Use cases		Future Wireless Comm.	References
00000000	000000	000000000000	000	

Cellular communications generations and 5G - Main drivers




Motivation	KPIs & Use cases		Future Wireless Comm.	References
00000000	000000	000000000000	000	

5G motivation on data rates

More applications demand high data rates

- HD video streaming
- Virtual reality (VR)
- Autonomous vehicles

Data Rates Comparison from 2G to 5G

Motivation	KPIs & Use cases		Future Wireless Comm.	References	
00000000					
56 motivation on latency					

Interactive applications requires very low latency

- Autonomous vehicles
- Tactile internet
- Multi-user online gaming

Mission-critical communications needs low latency on

- Real-time control
- Automation of dynamic processes (e.g. energy distribution, intelligent transport systems)

$5G\ target\ on\ latency\ -\ 1ms$

• 10 ms in 4G LTE

Motivation	KPIs & Use cases		Future Wireless Comm.	References
00000000	000000	000000000000	000	

5G motivation on energy consumption

- Green Communications must be realized in 5G
 - Energy consumption per bit should fall by 1000 times
- Battery lifespan of mobile devices needs to be prolonged for more power-hungry applications
- Reduce the operational expenditure (OPEX) of Mobile Network Operators (MNO)
 - Energy consumption has a very high impact on the overall operational cost of telecom providers
 - BSs account for almost 60% of the overall energy consumption of existing cellular networks
 - Investments for new traffic demands have no proportional revenue when there is low energy efficiency in the network
- Energy Harvesting from renewable resources: Solar/wind power, etc.

Motivation	KPIs & Use cases		Future Wireless Comm.	References
000000000	000000	000000000000	000	

5G motivation on scalability

Devices will reach 50 billion by 2023

- Internet of Things
- Healthcare devices

Location-aware communications will benefit

- Mission-critical services
- Energy efficiency
- Throughput increase

Motivation	KPIs & Use cases		Future Wireless Comm.	References
000000000	000000	000000000000	000	

5G motivation on connectivity

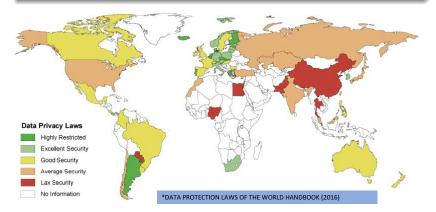
5G should support mobility of up to 500 $\ensuremath{\,\text{km/h}}$

- High-speed railway
- Vehicle-to-vehicle communications

Connection density is 1 million/km²

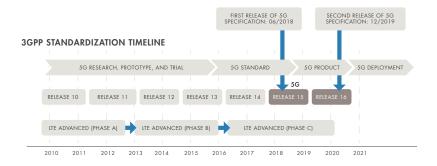
- Mission-critical services
- Energy efficiency
- Throughput increase

Mobility on demand (MoD) can support a wide range of mobility


- Static utility meters
- Walking pedestrians
- High-speed trains

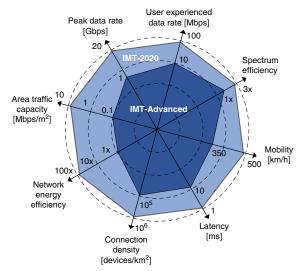
Motivation	KPIs & Use cases		Future Wireless Comm.	References
000000000	000000	000000000000	000	

5G motivation on security and privacy

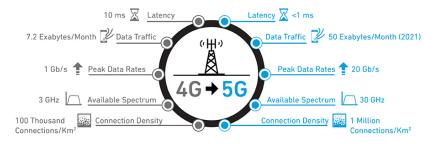

Great challenges on data security and user privacy

- Mobile payment
- Cloud storage, etc.

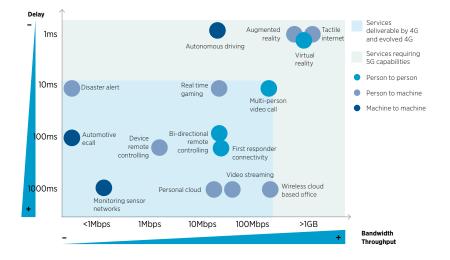
Motivation	KPIs & Use cases	Future Wireless Comm.	References
00000000			


5G timeline

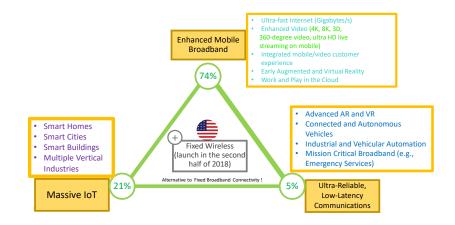
Motivation	KPIs & Use cases	Future Wireless Comm.	References
	00000		


Key capabilities

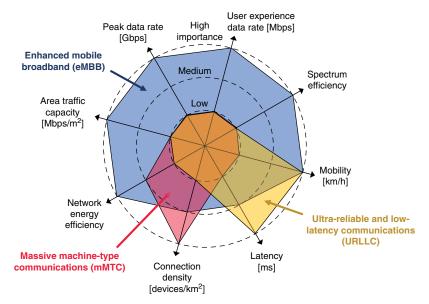
International Mobile Telecommunications (IMT) - Focus group in ITU-R


Motivation	KPIs & Use cases	Future Wireless Comm.	References
	00000		
-			

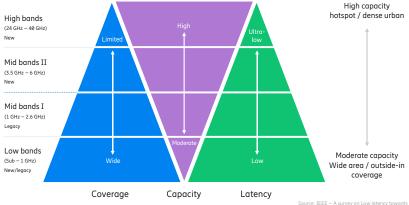
Comparing 4G and 5G


Motivation	KPIs & Use cases		Future Wireless Comm.	References
00000000	00000	000000000000	000	

5G latency and speed

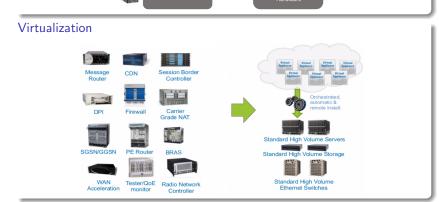


Priority use cases in 5G deployments



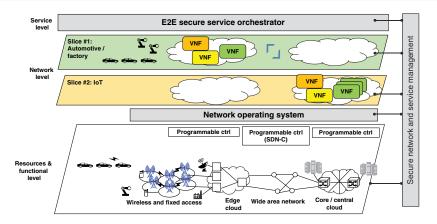
Importance of KPIs for different service types

Spoctrum	a availability	and trade off		
	000000			
Motivation	KPIs & Use cases		Future Wireless Comm.	References



Source: IEEE — A survey on Low latency towara 5G RAN, Core network and Cashing solutions.

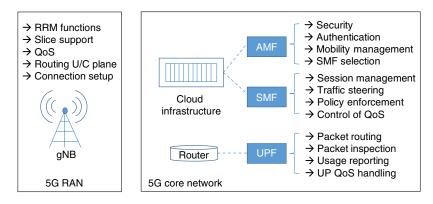
Motivation 000000000	KPIs & Use cases 000000	Architecture •000000000000000000000000000000000000	Future Wireless Comm. 000	References O
Cloud-na	tive Architect	ure		
Disaggro	egation			1
	Monolithi	c Architecture Disag	gregated Architecture	
		Brot App		


Hardware

Operating System

Motivation	KPIs & Use cases	Architecture	Future Wireless Comm.	References
00000000	000000	000000000000000000000000000000000000000	000	

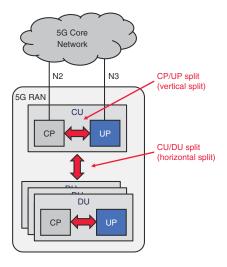
End-to-end architecture overview



Aim: Architecture flexibility, heterogeneous accesses, vertical business integration Enablers: SDN; NFV; Modularization; Network Slicing; Network

Softwarization; Multi-tenancy; Multi-Access Edge Computing

Functional split between NG-RAN and 5G core



Logical nodes

RRM: Radio Resource Management - AMF: Access and Mobility Management Function SMF: Session Management Function - UPF: User Plane Function

Motivation	KPIs & Use cases	Architecture	Future Wireless Comm.	References
		000000000000		

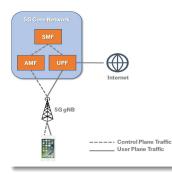
Functional split NG-RAN

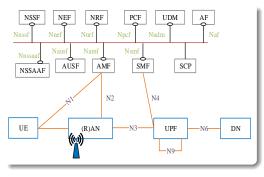
N2 - N3

Next generation interfaces for connecting logical nodes between NG-RAN and 5G Core

Control plane / user plane split

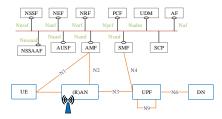
- Enables the introduction of SDN
- Optimization
- Consistent control in multi-vendor networks (interference management)
- Costs savings


Centralized units / decentralized units split


- Centralized resource management, performance gains
- Shift functions to different locations based in use cases requirements - multi-access edge computing (MEC)
- Adapt RAN processing to different deployments and infrastructures

Motivation	KPIs & Use cases	Architecture	Future Wireless Comm.	References
		000000000000000000000000000000000000000		
Enablers				
Modulari	zation			

Network elements split into basic modules or Network Functions (NFs)


- Formalizes the NFs as founding logical elements
- Achieve the paradigm of convergent network
- Next generation interfaces (inter-NF interfaces; CP-UP interfaces)

Motivation	KPIs & Use cases	Architecture	Future Wireless Comm.	References
		000000000000		
Enablers				

Modularization 5G core

Namf, Nsmf, \cdots : service-based interfaces used within the CP N1, \cdots , N9: reference points (interactions among NFs)

NSSAAF: Network Slice Specific Authentication and Authorization Function

AUSF: Authentication Server Function

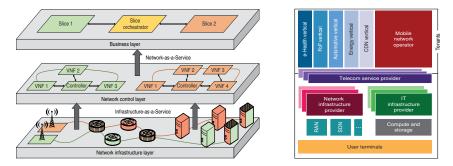
AMF: Access and Mobility Management Function

SMF: Session Management Function

SCP: Service Communication Proxy

NSSF: Network Slice Selection Function

- NEF: Network Exposure Function
- NFR: Network Function Repository
- PCF: Policy Control Function
- UDM: Unified Data Management
- AF: Application Function
- UPF: User Plane Function
- DN: Data Network

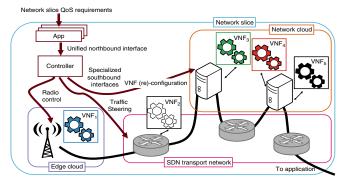

Main functionalities

- AMF mobility management, NAS ciphering and integrity protection, lawful interception, access authentication and authorization, security anchoring, security context management
- SMF session management, UE IP address allocation and management UP function selection and control, policy enforcement and QoS, roaming functionality
- AUSF authentication and authorization functionalities
 - NEF collect, store and securely expose the services and capabilities provided by 3GPP NFs
 - NFR maintaining and providing the deployed NF instances, support the service discovery function
 - UPF anchor point for intra- and inter-RAT mobility, packet routing and forwarding, UP QoS handling, traffic accounting and reporting

Motivation	KPIs & Use cases	Architecture	Future Wireless Comm.	References
		0000000000000		
Enablers				
Network	slicing & Mu	lti-tenancy		

Network slice: Independent logical network shaped by the interconnection of a subset of NFs, composing both CP and UP, and which can be independently instantiated and operated over physical or virtual infrastructure.

Different tenants can get their own network customized for a specific purpose.

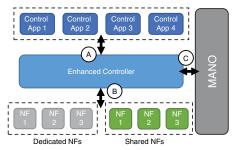


Network slicing calls for a novel architecture capable of flexibly orchestrating and configuring all the resources, functions, and entities used by a network slice \rightarrow Network softwarization

Next and a Constraint and an						
Enablers						
		0000000000000				
Motivation	KPIs & Use cases	Architecture	Future Wireless Comm.	References		

Network softwarization

Bring the **network programability** beyond SDN: the SDN principles are extended to all control and data layers as well as management functions deployed in mobile networks

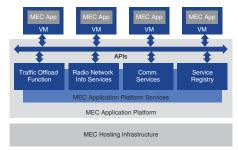


Enhanced Controller

- Networking control functions (e.g., mobility and session management, and potentially QoS/QoE control)
- 2 Connectivity control functions (mainly packet forwarding or SDN-based packet forwarding)
- 3 Wireless control functions (e.g., radio link adaptation and scheduling)

Softwarized Network Control

Abstract technology-specific or implementation-specific aspects of the network ecosystem with interfaces towards the MANO stack and to different control applications

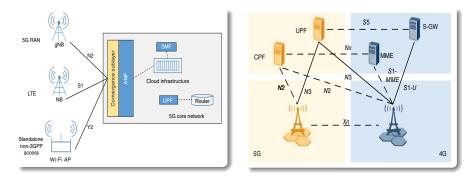

Interfaces

- A Enforces the conditions defined by the control apps that must be realized for a given traffic identifier on dedicated NFs and resources to fulfill the targeted SLA with respect to the relevant service policy.
- B Controls and configures parameters of the dedicated or shared PNFs and VNFs which implement the NFs on the data path.
- Conveys the control app specific information derived during the translation from high-level tenant requests and established SLAs into the network slice resource provisioning, NFs logic, and lifecycle parameters.

Mahila				
Enablers				
		00000000000000		
Motivation	KPIs & Use cases	Architecture	Future Wireless Comm.	References

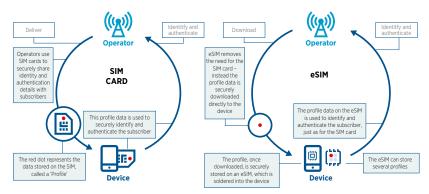
Mobile or Multi-access Edge Computing

Move applications close to the radio (physically collocated with base stations)

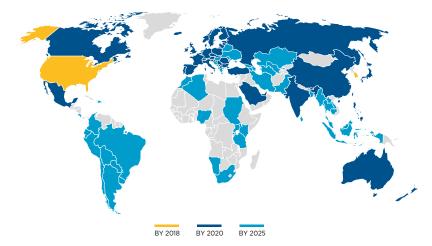


Benefits

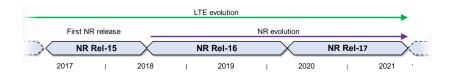
- Reduced E2E latency; communication between UE and app server can be kept in local proximity;
- 2 Increased networking efficiency;
- Increased security, because application data can be confined within areas where it is actually needed;
- Providing applications access to local context and communications-related information (for instance, an application may make use of proximity information among devices).



Minimize any dependencies between CN y AN to enable access convergence among 3GPP, non-3GPP, and fixed access networks


Motivation	KPIs & Use cases	Architecture	Future Wireless Comm.	References
		0000000000000000		
Enablers				
embedded	SIM (eSIM))		

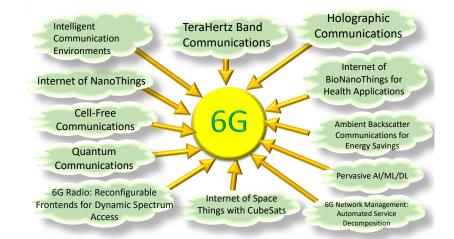
- · Permit remote management of the SIM on mobile devices
- 98% reduction in space over the removable SIM (allowing more room for batteries and modems in 5G devices)
- · Smaller form factors and remote provisioning for diverse IoT apps
- Secure, scalable, and minimal friction processes that enable operators to securely authenticate devices on 5G networks


Motivation	KPIs & Use cases	Architecture	Future Wireless Comm.	References
00000000	000000	000000000000	000	
Enablers				
Accelerat	ing 5G mom	entum		

PROJECTED PLANS FOR 5G LAUNCHES PER COUNTRY (SOURCE: GSMA INTELLIGENCE)

Motivation	KPIs & Use cases	Future Wireless Comm.	References
		000	

3GPP Release 17



Improve network capacity, latency, coverage, power efficiency, and mobility

- Extending the operation of NR to spectrum above 52.6 GHz to 71 GHz
- Introducing reduced capability NR devices (enabling services with a UE complexity/capability trade-off in-between the conventional high-quality eMBB services and the low-complexity services enabled LTE-MTC and NB-IoT)
- Enhanced Dynamic Spectrum Sharing (DSS)
- Multi-Sim devices
- More advanced Sidelink communications (D2D communications)
- Enabling broadcast/multicast services within NR
- Support for non-terrestrial networks (i.e., a satellite component of NR)

Motivation	KPIs & Use cases	Future Wireless Comm.	References
		000	

6G - key enabling technologies

Motivation	KPIs & Use cases	Future Wireless Comm.	References
		000	

Thank you!

lptelloq@ieee.org

Motivation	KPIs & Use cases		Future Wireless Comm.	References	
00000000	000000	000000000000	000	0	
References					

- **3GPP**. *TS* 23.501, System architecture for the 5G System (5GS). July 2020.
- Akyildiz, Ian F, Ahan Kak, and Shuai Nie. "6G and Beyond: The Future of Wireless Communications Systems". In: *Under Review* (2020).
- Akyildiz, Ian F, Shuai Nie, et al. "5G roadmap: 10 key enabling technologies". In: Computer Networks 106 (2016), pp. 17–48.
- Americas, 5G. "The 5G Evolution: 3GPP Releases 16-17". In: 5G Americas. 2020.
- Intelligence, GSMA. "The 5G Guide: A reference for operators". In: *GSMA*, *April* (2019).
 - Marsch, Patrick et al. 5G system design: architectural and functional considerations and long term research. John Wiley & Sons, 2018.
 - Tello-Oquendo, Luis et al. "Software-Defined architecture for QoS-Aware IoT deployments in 5G systems". In: *Ad Hoc Networks* 93 (2019), p. 101911.

Electricidad y Computación

5G cellular system: A brief review of architecture, use cases, and enabling technologies

> Luis Tello-Oquendo, PhD. Iptelloq@ieee.org

> > July 2020