

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Faculty of Electrical and Computer Engineering COURSE SYLLABUS Electronics III

1. CODE AND NUMBER OF CREDITS

CODE	FIEC01388		
NUMBER OF CREDITS : 4	Theoretical: 4	Practical: 0	

2. COURSE DESCRIPTION

The course on Electronics III presents a set of basic configurations and applications of analog integrated circuits arrangements, useful at different stages of design and control using analog electronics. Furthermore, this course reviews the use and design of filters and their variants, for example: lowpass, highpass, bandpass and notch filters. Finally, the fundamental principles of oscillator circuits, focusing on the design criteria for practical field applications.

3. PRE-REQUISITES AND CO-REQUISITES

PRE-REQUISITES	FIEC00190 Electronics II
CO-REQUISITES	

4. CORE TEXT AND OTHER REQUIRED REFERENCES FOR THE TEACHING OF THE COURSE

CORE TEXT	 J. M. Jacob. Application and design with analog integrated circuits. Prentice Hall, 1st edition. 1999.
REFERENCES	 R. F. Coughlin, F. F. Driscoll, Operational Amplifiers and Linear Integrated Circuits. Prentice Hall, 5th edition. 1999.
	 A.Larco. Application problems of operational amplifiers and circuits integrated multifunctional. Espol, 1st edition. 1994.

5. COURSE LEARNING OUTCOMES

At the end of the course, the student will be able to:

1. Analysis and design of analog electronic circuits using discrete and integrated devices.

- 2. Resolve practical problems by applying the techniques learned.
- 3. Design techniques and simulation of electronic circuits by using specialized software.

4. Elaborate technical reports, using modern methods of design, simulation and implementation of applied electronic subsystems.

6. COURSE PROGRAM

I. Operational Amplifiers and feedback (sessions - 11 hours)

- Principle of feedback.
- Principle of positive feedback.
- Saturation operation.
- Hysteresis applications.
- Control applications.
- II. Active Filters (Sessions 11 hours)
 - First and second order filters.
 - Low Pass Filters.
 - High Pass Filters.
 - Band Pass Filters.
 - Notch Filters.
 - Higher orders Filters.
- III. Linear and Switching Power Supplies (Sessions -11 hours)
 - Analysis and design of linear power supplies with opamps.
 - Analysis and design of linear power supplies with Three-Terminal Regulators.
 - Over current protections, and over-voltage transients protection systems.
 - Switching Power Supplies analysis.
 - Applications with the LM2576.

IV. Waveform Generators (Sessions - 11 hours)

- Square wave generators.
- Triangle wave generator.
- Sawtooth wave generators.
- Sine wave generators. .
- 555 timer. VCO: IC LM566 and IC MC1648
- IC function generator XR2206.
- AM, FM, PM modulation applications using IC LM1496 and IC MC1648.
- PWM, FSK modulation: fundamentals. .
- Phase locked loop fundamentals (PLL).
- PLL applications with IC CD4046 y LM565.

V. Nonlinear circuits. (Sessions - 12 hours)

- Clipper, precision rectifier, absolute value, peak detector.
- Transfer curve synthesizer.
- Applications and fundamentals of mathematical and operational circuits: multiplier, divider, square ٠ root and Logarithmic amplifiers.
- Analog multiplier integrated circuit: AD633. .

7. WORKLOAD: THEORY/PRACTICE

2 sessions per week for 2 hours each.

8. CONTRIBUTION OF THE COURSE TO THE EDUCATION OF THE STUDENT

Electronics III is aimed at engineering design.

BASIC TRAINING	PROFESSIONAL TRAINING	SOCIAL SKILLS DEVELOPMENT
	Х	

9. THE RELATIONSHIP BETWEEN THE LEARNING OUTCOMES OF THE COURSE AND THE LEARNING **OUTCOMES OF THE DEGREE PROGRAM**

ST	UDENT OUTCOMES OF THE DEGREE PROGRAM*	CONTRIBUTION (High, Medium, Low)	STUDENT OUTCOMES OF THE COURSE**	THE STUDENT MUST:
a)	An ability to apply knowledge of mathematics, science and engineering.	High	1, 2	Apply the knowledge acquired previous courses on analog electronic circuits.
b)	An ability to design and conduct experiments, and to analyze and interpret data	Medium	2	Analyze the results of a simulation or experiment.
c)	An ability to design a system, component or process to satisfy realistic constraints.	Medium	1	Design several electronic amplifier circuits.
d)	An ability to function on multidisciplinary teams.	Medium		
e)	An ability to identify, formulate and solve engineering problems.	High	3, 4	Select the appropriate electronic circuit depending on the problem.
f)	An understanding of ethical and professional responsibility.	Low		
g)	An ability to communicate effectively.	Medium		Support the design criteria and analysis used in tests and exams.

h)	A broad education necessary to understand the impact of engineering solutions in a social, environmental, economic and global context.	low		
i)	A recognition of the need for, and an ability to engage in life-long learning.	Medium		Be prepared to use new components and technologies.
j)	A knowledge of contemporary issues.	Medium	4	Recognize new challenges and schematics in electronics modern.
k)	An ability to use the techniques, skills, and modern tools necessary for engineering practice.	Medium	4	Use simulators.
I)	Capacity to lead, manage and undertake projects.	Medium	3	Understand the application of technical in socially useful projects.

10. EVALUATION IN THE COURSE

Evaluation activities		
Exams	X	Ĩ
Tests	X	
Homework/tasks	X	
Projects	and the second second	1
Laboratory/Experiments		
Class participation		
Visits		
Other		

11. PERSON RESPONSIBLE FOR THE CREATION OF THE SYLLABUS AND THE DATE OF ITS CREATION

Created by	Master Carlos Salazar López.		
Date	17 de mayo 2013		

5. APPROVAL

ACADEMIC SECRETARY OF THE ACADEMIC DEPARTMENT	DIRECTOR OF TECHNICAL ACADEMIC SECRETARY
NAME:	NAME:
Mrs.Leonor Caicedo G.	Eng.Marcos Mendoza
SIGNATURE:	ENONETWREIPERIOR PONTEGNICA DET LITOR
(demonde legen	Safe
Date of approval by the Directive	Ing Marros Mendora V
Council: 2013-537 2013-10-7	DIRECTOR DE LA SECRETARIA

6. VALIDITY OF THE SYLLABUS

RESOLUTION OF THE POLYTECHNIC BOARD:	13-12-343		
DATE:	2013-12-12		