

VII Jornadas Iberoamericanas de Ingeniería del Software e Ingeniería del Conocimiento

Experiences with the use of MERODE in the development of a Web Based
Application

Karina Chong1, Verónica Macías1, Monique Snoeck2

1 Facultad de Ingeniería en Electricidad y Computación
Escuela Superior Politécnica del Litoral (ESPOL)

Campus Gustavo Galindo, Km. 30.5 vía Perimetral
Apartado 09-01-5863, Guayaquil, Ecuador

2 Faculty of Business and Economics
Catholic University of Leuven

Naamsestraat 69
B-3000, Leuven, Belgium

kchong@fiec.espol.edu.ec, vmacias@espol.edu.ec, Monique.Snoeck@econ.kuleuven.be

Resumen

Este artículo presenta el reporte de la experiencia de usar MERODE como método de modelamiento del
negocio para el desarrollo de una aplicación web. MERODE posee algunas ventajas tales como el incremento de
los atributos de flexibilidad y mantenibilidad de las aplicaciones construidas siguiendo el método y la posibilidad
de realizar la verificación y validación interna del modelo de la aplicación de una forma automatizada. La
aplicación desarrollada tiene como funcionalidades generales la administración de la organización de eventos y la
administración de la información de un grupo de investigación. La aplicación fue monitoreada para verificar sus
atributos de flexibilidad y mantenibilidad y se verificó la factibilidad de usar el método en el proceso de desarrollo.
Los resultados obtenidos mostraron que la aplicación desarrollada tenía unos atributos de flexibilidad y
mantenibilidad muy satisfactorios.

Palabras Claves: MERODE, modelamiento, dominio, negocio, MDD.

Abstract

This article presents an experience report on using MERODE as the business modeling method for the
development of a web application. MERODE has several advantages as improving the flexibility and
maintainability of applications and the possibility of doing automated verification and validation on the internal
consistency of the model. The application's main functionalities were managing the organisation of events and
managing the general information of a research group. The developed application was monitored in order to check
its flexibility and maintainability and also to verify the feasibility of using the method. The results show that in fact
the flexibility and maintainability of the application were satisfactory.

1. Introduction

A domain model (aka. business model) is a
representation of a business domain from a particular
point of view. As any model, the purpose of a domain
model is tackling the complexity of the whole by
means of showing its relevant components and hiding
unimportant issues. The importance of a component of
the domain depends on the perspective that we are
using to analyze it; and that is why we can have
several views of the same domain.

Model Driven Development (MDD) is an approach
to develop software applications, based on domain
models. There are several methods and methodologies
that follow these principles. One of them is MERODE
[1], a method whose application is the main focus of
this article.

MERODE stands for Model driven, Existence-
dependency Relationship, Object
oriented Development. It is an Object Oriented
Enterprise (business or domain) Modeling method, and
it was designed by Monique Snoeck, Guido Dedene,
Maurice Verhelst and Anne-Marie Depuydt at the
Department of Applied Economic Sciences of the
Catholic University of Leuven, Belgiu

m [1].

MERODE has been applied and tested in a large
number of companies in Belgium and Netherlands; but
it is not very known in Latin America.

One of the disadvantages of some MDD methods is
the use of UML as modeling language, because it has a
lack of well-defined semantics [2]. MERODE on the
other hand proposes a formally defined modeling
syntax that follows the single model principle, based
on the conception of a single model, for which

mailto:kchong@fiec.espol.edu.ec
mailto:Monique.Snoeck@econ.kuleuven.be

different views are constructed. It also defines
consistency rules between views [3], and provides
means for implementing automatic verification and
validation of consistency between the views.
MERODE also follows a natural layered architecture,
grouping specifications according to the aspect they
originate from [4]. Layered architectures have been
employed for improving system modularity before, but
MERODE goes a step further defining what kind of
objects, should be in each layer. Figure 1.

Figure 1. MERODE architecture Layers and change

propagation

In the inner layer called the Enterprise Layer,
domain objects are defined. They are independent
from those in the higher layers, and communication is
constrained to same-layer objects.

The middle layer is called the Functionality Layer.
Objects in this layer represent the input and output
services that the application will offer. They
communicate between them and those in the
Enterprise Layer. Input services are requirements of
entering, or changing information; and output services
are information requirements.

The User Interface Layer, is the outer layer.
Objects defined here represent the Graphical User
Interface (GUI) components of the application, and
communicate between them and with objects in the
Functionality Layer.

The order of the layers have the purpose of
improving the flexibility and maintainability of the
system. This is achieved by locating the objects that
are less subject to changes, in the inner layer.
Therefore, changes to objects prone to change (usually
GUI objects) propagate less than changes to objects
that remain constant during their life-cycle (usually
domain objects) [4].

Another relevant characteristic of MERODE is the
use of events as a connection point between Enterprise
(Bussiness Layer) and Functionality Layers
(Information System Layer). Other object-oriented

methods usually subordinate the events to the objects,
and represent the object interaction by means of
sequence or collaboration diagrams that usually have
long sequences of methods invocation [5], in a
message-passing like approach. The problem with this
procedure is that in the presence of very long
sequences of methods, the flexibility and
maintainability of applications decrease. The event-
driven approach used by MERODE, gives to events
the same relevance than an object, and recognizes
them as a fundamental part of the structure or
experience [5].

An object business event is an atomic unit that
represents a particular action that happens in the real
world; so object interactions now is modeled by
defining which objects are concurrently involved in a
given event [5]. The order the different objects execute
an event is determined by an event-dispatcher. This
element is responsible for sending events notifications
to all participating components, coordinates the
responses (success or failure) and provides the
triggering component with feedback about the
execution status [6]. As a result the long sequences of
method invocations are replaced by standardized
interaction patterns.

Given the aforementioned advantages we decided
to implement an application using the MERODE
method, and evaluate the final product and the process
to develop it.

This article is organized as follows. The second
section introduces the application developed using
MERODE for the analysis phase. Section 3 presents
the metrics that we defined in order to evaluate the
final product and the development process. Results of
our measurements are shown and discussed in section
4. Finally, conclusions and recommendations of this
work are presented in section 5.

2. The application

In order to apply the method, we developed a web
application for our use in organizing conferences and
publishing the research work carried out within our
group.

As part of the activities of our research group we
organize conferences, workshops and courses for
students and industrial partners. Hence, the application
to be developed should provide us with the required
functionality for publishing relevant data, registering
assistants in specific events, for sending email
notifications of incoming events to the registered
users, for sending email notifications of deadlines for
registering or paying, for the reporting and controlling
of payments, for managing documents presented by
attendants in order to have discounts (student card,
IEEE member card, etc.), for checking the attendance
to the events and for registering the material delivered
to the assistants.

Interface Layer

Functionality Layer

Domain Layer

Class
Message
Propagation of
change

As a research group, we also need to publish
general information on the group (objectives,
members, etc.) the ongoing projects, past projects and
articles produced.

We decided to develop it as a web application,
because we want the general public to access the
information. The use of roles allows giving some users
the responsibility of managing the information, and
allows having a general public role, which is intended
for users who can see the information and register to
events. Roles can be overlapping, so there is the
possibility that an administrator user sees the same
information than the general public can see.

The application was developed using an object
oriented programming language, but according to the
authors, MERODE can be used to model the domain
for applications that would be implemented using
other programming paradigms [4]. We choose to use
Java because it is a multi-platform and very robust
language, and because we thought it would be more
natural to use an object oriented approach in the
implementation as we used the same approach for the
domain model.

3. Application and Process Development
Metrics used

The following metrics were taken during the
development and beta-releases of the application:

• Development time
• Differences between estimated and actual

development time
• Number of changes to the application
• Number of versions of the Software

Requirements Specification (SRS)
Document

• Number of versions of the different
“views” in the model

The development time, and the differences between

the estimated time and the actual time were taken in
order to verify if MERODE affects the scheduled time
and also to study the feasibility of using it in a
commercial environment where time to develop an
application is usually very restricted. The
methodologies that were used to estimate the
development time were Function Points [7] and
COCOMO [8].

The number of changes made in the application
were collected in order to estimate the quality of our
domain specification, and to show the frequency of
each type of change.

Changes were classified as: Conceptual changes,
Form changes and Error Changes. Conceptual changes
were the ones that cause a modification in the Business
layer. Form changes affect the Functionality layer and
the User Interface layer, but were requested by the
final user. Error changes were demanded after an
application fault, but did not affect the Business layer.

Numbers of versions of SRS were taken to measure
how much the requirements were changing as the
application was being developed.

Finally version numbers of the different views in
the model were taken to show how much the domain
model changed while the application was being
developed.

The views of the model defined by MERODE are
the Existence-Dependency Graph (EDG), the Object-
Event Table (OET) and the Finite State Machine
(FSM) graph. The EDG is a data model that shows the
domain objects and their relationships, the OET shows
the relations between objects and events, and how an
event affects (creating, modifying or ending) each
object, and the FSM shows the life-cycle states of an
object, and the sequence constraints that an object
imposes on events[4].

4. Measurement Results

Table 1 shows the estimated and the actual time for
each application’s component in working days, the
difference between the actual and the estimated time,
and the proportion of that difference against the
estimated time.

Table 1. Estimated and Actual Developing Time

Com-
ponent

Estima-
ted time
(working

days)

Actual
time

(working
days)

Differen-
ce

between
actual

and
estimated

time

% of
the

diffe-
rence

Subs-
cription

50 74 24 48%

Events 40 54 14 35%
Publi-
cations

20 31 11 55%

Mana-
gement

20 25 5 25%

Total 130 184 54 42%

 The data shows a considerable difference between

the estimated and the actual development time for each
one of the components. The larger differences
correspond to components that were developed first
(Publications and Subscriptions). This effect could be
the result of the developer inexperience both in
estimation as in the use of the method. The software
was developed by an undergraduate thesis student who
also was in charge of performing time development
estimation. She had taken a course on MERODE, but
did not have much experience with the use of the
programming language and the platform. As a result
the last component that was developed had less
difference between the real and the estimated
development time.

The difference also may be explained by the time
that a developer has to devote in order to follow the
MERODE architecture strictly. For example if you
have 2 domain objects that have a existence-
dependency relationship between them and just the
basic creating and ending events for each of them, in
order to follow the MERODE layered architecture the
implementation would have 2 classes for each object,
4 classes for the business events, 4 classes for the
functionality layer and at least 1 class for the GUI
layer. Our project had 29 objects, so it represents a
considerable development effort.

Then, as the estimation-time was calculated by
someone with little experience in doing this and who
also had but little experience with developing web
applications, it is too difficult to know in how far a bad
estimation and in how far a possible effect of the use
of the methodology, were the cause of the difference
between the estimated developing time and the actual
developing time, and therefore we can’t say anything
about how the application of MERODE affects the
developing time.

Table 2 shows the amount of changes that were
introduced in the beta-releases of the model, grouped
by type.

Table 2. Number of changes

Components

Change Type
Conceptual Form Error

Suscriptions 0 20 4
Events 1 10 6

Publications 0 4 2
Management 0 2 2

Total 1 36 14
Proportion

(%)
1.96% 70.59% 27.45%

One of the advantages of MERODE is the

improvement in the quality of the domain
specification. If we have a domain model that is
changing very frequently, it could mean either you are
working in a very difficult business domain, or that
your domain model did not reflect the real business
domain. Our application was not in a complex
business domain, and as we can see in Table 2, we
have just 1 change in the domain model during the 7
beta-releases; so we can say that the domain model we
constructed was acceptably stable. According to our
results functionality and user interface objects have a
higher rate (70.59% between both) of change than
business objects (1.96%). Error changes have also a
lower rate (27.45%) than form changes, and that also
is a good indicator of the high quality of the modeling
specifications. Figure 2.

Conceptual
Form
Error

Figure 2. Changes types Proportion.

0

5

10

15

20

25

30

Sus
cri

pti
on

s

Eve
nts

Pub
lica

tio
ns

Man
age

men
t

Error
Form
Conceptual

Figure 3. Changes types by components

As depicted in Figure 3, the Subscription

component had more total changes, which is logical
since it was the first component developed. The last
components show fewer changes; particularly form
changes were greatly reduced mostly because the
application’s GUI was already established and the
developer had experienced with the GUI programming
libraries used in the project.

In Table 3 we present the numbers of versions of
SRS document, EDG, OET and FSM views produced
during the 7 beta-releases.

Table 3. Number of versions by document and model

views
 Number of

versions
SRS document 4

Existence Dependency Graph
EDG

15

Object Event Table OET 13
Finite State Machine FSM 2

 The EDG view had more versions than the rest,

which might appear as inconsistent with the results
showed in Table 2, because we said that we have just 1
change in the model; but we need to say that these
different versions of the EDG were the result of adding
object attributes, and do not represent adding or
deleting business objects, or changes in the objects

relationships; consequently they were not consid
ceptual changes.

5.

ence we had in using MERODE

d maintainab

w MERO
architecture in a manual way takes

Th

future, we plan the extension of the cod
enerator with an option for a web-based

ered
in the number of con

 Conclusions

The experi to
develop a web base application produces the following
conclusions:

• It was feasible to use MERODE as the analysis
method to develop a web application.

• The attributes of flexibility an ility

DE

of the product were satisfactory, even more
than initially expected.

• The development process to follo

considerable effort in man-hours.

ese conclusions are in line with earlier evaluations
of the method [9].

In order to use MERODE in a commercial
environment would be necessary the use of a
generation code tool based on the model. Currently, a
code generation tool is available to generate a
prototype application in Java [10]. The code is
generated by using the AndroMDA environment and
uses the Hibernate Framework for the persistence layer
and the session beans implementing the event handling
layer. In the e
g user
interface.

12. References

[1] MERODE web site. Last visited 28/09/2007.
Available in http://merode.econ.kuleuven.ac.be/
[2] France R., Ghosh S., and Dinh-Trong T. “Model-
Driven Development Using UML 2.0: Promises and
Pitfalls”, IEEE Computer Magazine 39, no 2, 2006,

p. 59-66

[10]

p

[3] Snoeck M., Michels C., and Dedene G.,
“Consistency by Construction: the case of MERODE”,
Conceptual Modeling for Novel Application Domains,
ER 2003 Workshops ECOMO, IWCMQ, AOIS, and
XSDM Proceedings, October 2003, pp. 105-117
[4] Snoeck M., Dedene G., Verhelst M. and Anne-
Marie Depuydt, Object Oriented Enterprise Modelling
with MERODE, Leuven University Press, 1999, pp. 3-
21
[5] Michiels C., Snoeck M., Lemahieu W., Goethals
F., and Dedene G., “A Layered Architecture
Sustaining Model Driven and Event Driven Software
Development”, Andrei Ershov International
Conference "Perspectives of Systems Informatics"
Proceedings, Lecture Notes in Computer Science,
2003
[6] Snoeck M, Lemahieu W., Michiels C., and Dedene
G., “Event-based Software Architectures”, Object-
Oriented Information Systems, 9th International
Conference, OOIS 2003 Proceedings, September
2003, Lecture Notes in Computer Science, pp. 107-117
[7] Garmus D., and Herron D., Function Point
Analysis: Measurement Practices for Successful
Software Projects, Addison-Wesley, 2000
[8] Boehm B., Abts C., Winsor A., Chulani S.,
Bradford K., Horowitz E., Madachy R., Reifer D., and
Steece B., Software Cost Estimation with COCOMO
II, Prentice Hall, 2000
[9] Snoeck Monique, Dedene Guido, Experiences with
Object-Oriented Model-driven development,
Proceedings of the STEP'97 conference, London, July
1997.

 Monsieur G, Snoeck M, Haesen R, Lemahieu
W, 2006, PIM to PSM transformations for an event
driven architecture in an educational tool, European
Workshop on Milestones, Models and Mappings for
Model-Driven Architecture (3M4MDA), Bilbao
(Spain), July 11, pp. 49 - 64.

	Experiences with the use of MERODE in the development of a Web Based Application

